Electric field control of magnetic order above room temperature

ferhIn collaboration with teams from Université Paris-Sud, Ecole Centrale Paris, the University of Newcastle and the Helmholtz Zentrum Berlin, we have shown that a transition from an antiferromagnetic to a largely ferromagnetic state can be induced just above room temperature by applying a low electric field in heterostructures combining BaTiO3 and FeRh. The magnetization change is very large, corresponding to the largest magnetoelectric coupling ever reported. Structural data as well as first principles calculations indicate that the effect is mainly driven by voltage-dependent strain from BaTiO3. These results highlight the relevance of hybrid multiferroics combining oxides and transition metal alloys to achieve large, high temperature magnetoelectric effects. See also the news item at HZB and on the INP CNRS website.

Electric-field control of magnetic order above room temperature
R. O. Cherifi et al., Nature Mater. 13, 345 (2014)